-- | -- Module : PhantomPhases.AST -- Copyright : © 2019 Elias Castegren and Kiko Fernandez-Reyes -- License : MIT -- -- Stability : experimental -- Portability : portable -- -- This module includes functionality for creating an Abstract Syntax Tree (AST), -- as well as helper functions for checking different -- aspects of the AST. The AST abstract over their kind 'Phase', where -- 'Phase' represent the current state of the AST. For example, after parsing -- the AST is of 'Parsed' @Phase@; after type checking with 'PhantomFunctors.tcProgram' the -- returned AST is of 'Checked' @Phase@, indicating that the AST has been -- type checked. {-# LANGUAGE NamedFieldPuns, KindSignatures, DataKinds #-} module PhantomPhases.AST where import Data.Maybe import Data.List import Text.Printf (printf) type Name = String -- | Check if a name is a constructor name isConstructorName = (=="init") -- * AST declarations -- $ -- Declaration for the Abstract Syntax Tree of the language. This section -- contains the type, class, methods, fields and expressions represented -- as an AST. The AST is produced by a parser. For more information on -- building parsers, we recommend to read -- <https://hackage.haskell.org/package/megaparsec-7.0.5 megaparsec>. -- | Representation of types abstracting over the 'Phase' data Type (p :: Phase) = ClassType Name -- ^ Represents a class of name 'Name' | IntType -- ^ Represents integers | BoolType -- ^ Represents booleans | Arrow {tparams :: [Type p], tresult :: Type p} -- ^ Represents a function type | UnitType -- ^ Represents the unit (void) type deriving (Eq) instance Show (Type p) where show (ClassType c) = c show IntType = "int" show BoolType = "bool" show (Arrow ts t) = "(" ++ commaSep ts ++ ")" ++ " -> " ++ show t show UnitType = "unit" -- | The representation of a program in the form of an AST node. newtype Program (ip :: Phase) = -- | Programs are simply a list of class definitions ('ClassDef') in a certain 'Phase' Program [ClassDef ip] deriving (Show) -- | Phases that have already been passed. This has been thought as going -- through different phases of a compiler. We assume that there is a total order -- between phases. data Phase = Parsed -- ^ -- ^ Initial status of an AST node after parsing | Checked -- ^ Status of an AST node after type checking -- | A representation of a class in the form of an AST node. As an example: -- -- > class Foo: -- > val x: Int -- > var y: Bool -- > def main(): Int -- > 42 -- -- the code above, after parsing, would generate the following AST: -- -- > ClassDef {cname = "Foo" -- > ,fields = [FieldDef {fname = "x" -- > ,ftype = IntType -- > ,fmod = Val}] -- > ,methods = [MethodDef {mname = "main" -- > ,mparams = [] -- > ,mtype = IntType -- > ,mbody = [IntLit {etype = Nothing, ival = 42}] -- > }]} data ClassDef (ip :: Phase) = ClassDef {cname :: Name -- ^ String that represents the name of the class ,fields :: [FieldDef ip] -- ^ List of field definitions of a class ,methods :: [MethodDef ip] -- ^ List of method definitions of a class } instance Show (ClassDef ip) where show ClassDef {cname, fields, methods} = "class " ++ cname ++ concatMap show fields ++ concatMap show methods ++ "end" -- | Field qualifiers in a class. It is thought for a made up syntax such as: -- -- > class Foo: -- > val x: Int -- > var y: Bool -- -- This indicates that the variable @x@ is immutable, and @y@ can be mutated. -- data Mod = Var -- ^ Indicates that the field can be mutated | Val -- ^ Indicates that the field is immutable deriving (Eq) instance Show Mod where show Var = "var" show Val = "val" -- | Representation of a field declaration in the form of an AST node. -- As an example, the following code: -- -- > class Foo: -- > val x: Int -- -- could be parsed to the following field representation: -- -- > FieldDef {fname = "x" -- > ,ftype = IntType -- > ,fmod = Val} -- data FieldDef (p :: Phase) = FieldDef {fname :: Name -- ^ Name of the field name ,ftype :: Type p -- ^ Type of the field ,fmod :: Mod -- ^ Field qualifier } -- | Helper function to check whether a 'FieldDef' is immutable. isValField :: FieldDef p -> Bool isValField FieldDef{fmod} = fmod == Val -- | Helper function to check whether a 'FieldDef' is mutable. isVarField :: FieldDef p -> Bool isVarField = not . isValField instance Show (FieldDef p) where show FieldDef{fname, ftype, fmod} = show fmod ++ " " ++ fname ++ " : " ++ show ftype -- | Representation of parameters in the form of an AST. data Param (p :: Phase) = Param {pname :: Name -- ^ Name of the parameter ,ptype :: Type p -- ^ Type of the parameter } instance Show (Param p) where show Param{pname, ptype} = pname ++ " : " ++ show ptype -- | Representation of a method declaration in the form of an AST. For example: -- -- > class Foo: -- > def main(): Int -- > 42 -- -- the code above, after parsing, would generate the following AST: -- -- > ClassDef {cname = "Foo" -- > ,fields = [] -- > ,methods = [MethodDef {mname = "main" -- > ,mparams = [] -- > ,mtype = IntType -- > ,mbody = [IntLit {etype = Nothing, ival = 42}] -- > }]} -- data MethodDef (ip :: Phase) = MethodDef {mname :: Name -- ^ Name of the method definition ,mparams :: [Param ip] -- ^ List of arguments to the method ,mtype :: Type ip -- ^ Return type ,mbody :: Expr ip -- ^ Body of the method } -- | Takes a list of things that can be shown, and creates a comma -- separated string. commaSep :: Show t => [t] -> String commaSep = intercalate ", " . map show instance Show (MethodDef ip) where show MethodDef{mname, mparams, mtype, mbody} = "def " ++ mname ++ "(" ++ commaSep mparams ++ ") : " ++ show mtype ++ show mbody -- | Representation of integer operations data Op = Add | Sub | Mul | Div deriving (Eq) instance Show Op where show Add = "+" show Sub = "-" show Mul = "*" show Div = "/" -- | Representation of expressions in the form of an AST node. The language -- is expression-based, so there are no statements. As an example, the following -- identity function: -- -- > let id = \x: Int -> x -- > in id 42 -- -- generates this 'Expr': -- -- > Let {etype = Nothing -- > ,name = "id" -- > ,val = Lambda {etype = Nothing -- > ,params = [Param "x" IntType] -- > ,body = FunctionCall {etype = Nothing -- > ,target = VarAccess Nothing "id" -- > ,args = [IntLit Nothing 42]} -- > } -- > ,body :: Expr p -- > } -- > data Expr (p :: Phase) = -- | Representation of a boolean literal BoolLit {etype :: Maybe (Type p) -- ^ Type of the expression ,bval :: Bool -- ^ The "Haskell" 'Bool' data constructor } | IntLit {etype :: Maybe (Type p) -- ^ Type of the expression ,ival :: Int } -- ^ Representation of an integer literal | Null {etype :: Maybe (Type p) -- ^ Type of the expression } | Lambda {etype :: Maybe (Type p) -- ^ Type of the expression ,params :: [Param p] -- ^ List of arguments with their types ('Param') ,body :: Expr p -- ^ The body of the lambda abstraction } | VarAccess {etype :: Maybe (Type p) -- ^ Type of the expression ,name :: Name -- ^ Variable name } | FieldAccess {etype :: Maybe (Type p) -- ^ Type of the expression ,target :: Expr p -- ^ The target in a field access, e.g., @x.foo@, then @x@ is the target. ,name :: Name -- ^ Field name, e.g., @x.foo@, then @foo@ is the 'Name' } | Assignment {etype :: Maybe (Type p) -- ^ Type of the expression ,lhs :: Expr p -- ^ Left-hand side expression ,rhs :: Expr p -- ^ Right-hand side expression } | MethodCall {etype :: Maybe (Type p) -- ^ Type of the expression ,target :: Expr p -- ^ The target of a method call, e.g., @x.bar()@, then @x@ is the target ,name :: Name -- ^ The method name ,args :: [Expr p] -- ^ The arguments of the method call } | FunctionCall {etype :: Maybe (Type p) -- ^ Type of the expression ,target :: Expr p -- ^ The target of the function call, e.g., @bar()@, then @bar@ is the target ,args :: [Expr p] -- ^ The function arguments } | If {etype :: Maybe (Type p) -- ^ Type of the expression ,cond :: Expr p -- ^ The condition in the @if-else@ expression ,thn :: Expr p -- ^ The body of the @then@ branch ,els :: Expr p -- ^ The body of the @else@ branch } | Let {etype :: Maybe (Type p) -- ^ Type of the expression ,name :: Name -- ^ Variable name to bound a value to ,val :: Expr p -- ^ Expression that will bound variable @name@ with value @val@ ,body :: Expr p -- ^ Body of the let expression } | BinOp {etype :: Maybe (Type p) -- ^ Type of the expression ,op :: Op -- ^ Binary operation ,lhs :: Expr p -- ^ Left-hand side expression ,rhs :: Expr p -- ^ Right-hand side expression } | New {etype :: Maybe (Type p) -- ^ The type of the expression ,ty :: Type p -- ^ The class that one instantiates, e.g., `new C` ,args :: [Expr p] -- ^ Constructor arguments } -- ^ It is useful to decouple the type of the expression from the type of the -- instantiated class. This distinction becomes important whenever we have -- subtyping, e.g., an interface `Animal` where `Animal x = new Dog` | Cast {etype :: Maybe (Type p) -- ^ Type of the expression ,body :: Expr p -- ^ Body that will be casted to type @ty@ ,ty :: Type p -- ^ The casting type } -- * Helper functions -- $helper-functions -- The helper functions of this section operate on AST nodes to check -- for different properties. As an example, to check whether an expression -- is a field, instead of having to pattern match in all places, i.e., -- -- > exampleFunction :: Expr -> Bool -- > exampleFunction expr = -- > -- does some stuff -- > ... -- > case expr of -- > FieldAccess expr -> True -- > _ -> False -- > -- we define the 'isFieldAccess' helper function, which checks -- whether a given expression is a 'FieldAccess': -- -- > exampleFunction :: Expr -> Bool -- > exampleFunction expr = -- > -- does some stuff -- > ... -- > isFieldAccess expr -- > -- | Constant for the name @this@, commonly used in object-oriented languages. thisName :: Name thisName = "this" -- | Checks whether a 'Type' is a function (arrow) type isArrowType :: (Type p) -> Bool isArrowType Arrow {} = True isArrowType _ = False -- | Checks whether an expression is a 'FieldAccess'. isFieldAccess :: Expr p -> Bool isFieldAccess FieldAccess{} = True isFieldAccess _ = False -- | Checks whether an expression is a 'VarAccess'. isVarAccess :: Expr p -> Bool isVarAccess VarAccess{} = True isVarAccess _ = False -- | Checks whether an expression is a 'VarAccess' of 'this'. isThisAccess :: Expr p -> Bool isThisAccess VarAccess{name} = name == thisName isThisAccess _ = False -- | Checks whether an expression is an lval. isLVal :: Expr p -> Bool isLVal e = isFieldAccess e || isVarAccess e instance Show (Expr p) where show BoolLit{bval} = show bval show IntLit{ival} = show ival show Null{} = "null" show Lambda{params, body} = printf "fun (%s) => %s" (commaSep params) (show body) show VarAccess{name} = name show FieldAccess{target, name} = printf "%s.%s" (show target) name show Assignment{lhs, rhs} = printf "%s = %s" (show lhs) (show rhs) show MethodCall{target, name, args} = printf "%s.%s(%s)" (show target) name (commaSep args) show FunctionCall{target, args} = printf "%s(%s)" (show target) (commaSep args) show If{cond, thn, els} = printf "if %s then %s else %s" (show cond) (show thn) (show els) show Let{name, val, body} = printf "let %s = %s in %s" name (show val) (show body) show BinOp{op, lhs, rhs} = printf "%s %s %s" (show lhs) (show op) (show rhs) show New {ty, args} = printf "new %s(%s)" (show ty) (commaSep args) show Cast{body, ty} = printf "%s : %s" (show body) (show ty) -- | Helper function to check whether a 'Type' is a class isClassType :: Type p -> Bool isClassType (ClassType _) = True isClassType _ = False -- | Helper function to extract the type from an expression. getType :: Expr 'Checked -> Type 'Checked getType = fromJust . etype -- | Sets the type of an expression @e@ to @t@. setType :: Type 'Checked -> Expr 'Checked -> Expr 'Checked setType t e = e{etype = Just t}